

Solis RHI-HV Series Hybrid Inverter

Instruction Manual

(For USA) Ver 1.1

Ginlong Technologies Co., Ltd. No. 57 Jintong Road, Binhai Industrial Park, Xiangshan, Ningbo, Zhejiang, 315712, P.R.China. Tel: +86 (0)574 6578 1806 Fax: +86 (0)574 6578 1606 Email:info@ginlong.com Web:www.ginlong.com

Please adhere to the actual products in case of any discrepancies in this user manual. If you encounter any problem on the inverter, please find out the inverter S/N and contact us, we will try to respond to your question ASAP.

Comply with CA Rule 21/ Certified to UL 1741 SA Certified to UL Std. No. 1741-Second Edition & CSA-C22.2 No.107.1-16

Ginlong Technologies Co., Ltd.

Contents

1. Introduction	2
1.1 Product Description	2
1.2 Packaging	3
2. Safety & Warning	4
2.1 Safety	4
2.2 General Safety Instructions	4
2.3 Notice For Use	6
3. Overview	7
3.1 Screen	7
3.2 Keypad	7
3.3 Terminal Connection	7
4. Installation	8
4.1 Select a Location for the Inverter	8
4.2 Mounting the Inverter	10
4.3 PV Terminals	13
4.4 Assembling the AC Terminals	13
4.5 Battery Fuse Terminals	15
4.6 Communication Terminals	16
4.7 External Ground Connection	20
4.8 LED Indicators	20
5. Operation	21
5.1 Initial Display	21
5.2 Main Menu	23
5.3 Information	23
5.4 Settings	27
5.5 Advanced Information	29
5.6 Advanced Settings - Technicians Only	33
6. Commissioning	59
6.1 Preparation of Commissioning	59
6.2 Commissioning Procedure	59
7. Troubleshooting	60
8. Maintenance	66
9. Appendix	72
9.1 Solutions for different grid topology	72

1. Introduction

1.1 Product Description

The Solis RHI-HV 5G series is designed for residential hybrid systems, which can work with high voltage lithium ion batteries to maximize self-consumption rate.

 $This \ product \ can \ operate \ in \ both \ ON-Grid \ and \ OFF-Grid \ modes.$

The Solis RHI-HV series hybrid inverters contain 3 different models which are grid support transformerless utility interactive inverters:

RHI-1P5K-HVES-5G, RHI-1P7.6K-HVES-5G, RHI-1P10K-HVES-5G

1.2 Packaging

Please ensure that the following items are included in the packaging with your machine:

If anything is missing, please contact your local Solis distributor.

2. Safety & Warning

2.1 Safety

The following types of safety instructions and general information appear in this document as described below:

DANGER:

"Danger" indicates a hazardous situation which if not avoided, will result in death or serious injury.

WARNING:

"Warning" indicates a hazardous situation which if not avoided, could result in death or serious injury.

CAUTION:

"Caution" indicates a hazardous situation which if not avoided, could result in minor or moderate injury.

NOTE:

"Note" provides tips that are valuable for the optimal operation of your product.

NOTE:

If you want to cut off the MLRSD, push the button in the middle of the RSD-Estop. And rotate the button clockwise to reset the function.

2.2 General Safety Instructions

Save These Instructions:

This manual contains important instructions that shall be followed during installation and maintenance of the inverter.

WARNING:

Only devices in compliance with SELV (EN 69050) may be connected to the RS485 and USB interfaces.

WARNING:

Please do not connect PV array positive (+) or negative (-) to ground, it could cause serious damage to the inverter.

WARNING:

Electrical installations must be done in accordance with the local and national electrical safety standards.

WARNING:

Operator must put on the technicians' gloves during the whole process in case of any electrical hazards.

WARNING:

Do not touch any inner live parts until 5 minutes after disconnection from the utility grid and the PV input.

WARNING:

To reduce the risk of fire, over-current protective devices (OCPD) are required for circuits connected to the inverter.

The DC OCPD shall be installed per local requirements. All photovoltaic source and output circuit conductors shall have isolators that comply with the NEC Article 690, Part II. All Solis single phase inverters feature an integrated DC switch.

CAUTION:

Risk of electric shock, do not remove cover. There is no user serviceable parts inside, refer servicing to qualified and accredited service technicians.

CAUTION:

The PV array supplies a DC voltage when they are exposed to sunlight.

CAUTION:

Risk of electric shock from energy stored in capacitors of the Inverter, do not remove cover for 5 minutes after disconnecting all power sources (service technician only). Warranty may be voided if the cover is removed without authorization.

CAUTION:

The surface temperature of the inverter can reach up to $75^{\circ}C$ ($167^{\circ}F$). To avoid risk of burns, do not touch the surface of the inverter while it is operating. Inverter must be installed out of the reach of children.

PV module used with inverter must have an IEC 61730 Class A rating.

2. Safety & Warning

WARNING:

Operations below must be accomplished by licensed technician or Solis authorized person.

WARNING:

AC-BACKUP of RHI-HV series is forbidden to connect to the grid.

WARNING:

The RHI series does not support parallel (three- and single-phase) operation on the AC-BACKUP port. Parallel operation of the unit will void the warranty.

2.3 Notice For Use

The inverter has been constructed according to the applicable safety and technical guidelines. Use the inverter in installations that meet the following specifications ONLY:

- 1. Permanent installation is required.
- 2. The electrical installation must meet all the applicable regulations and standards.
- 3. The inverter must be installed according to the instructions stated in this manual.
- 4. The inverter must be installed according to the correct technical specifications.

3.1 Screen

Solis RHI-HV series adopts a 7 inch color screen. It displays the status, operating information, and settings of the inverter.

3.2 Keypad

There are four keys in the front panel of the inverter (from left to right): ESC, UP, DOWN and ENTER keys. The keypad is used for:

- Scrolling through the displayed options (the UP and DOWN keys);
- Access and modification of settings (the ESC and ENTER keys).

3.3 Terminal Connection

Solis RHI series inverter is different from a normal grid-tied refer inverter, please refer the instructions below before initial connection.

4.1 Select a Location for the Inverter

To select a location for the inverter, the following criteria should be considered:

WARNING: Risk of fire

Despite careful construction, electrical devices can cause fires.

- Do not install the inverter in areas containing highly flammable materials or gases.
- Do not install the inverter in potentially explosive atmospheres.
- Exposure to direct sunlight may cause output power derating. It is recommended to avoid installing the inverter in direct sunlight.
- It is recommended that the inverter is installed in a cooler ambient which doesn't exceed 104F/40C.

- Install on a wall or strong structure capable of bearing the weight of the machine (30kg).
- Install vertically with a maximum incline of +/- 5 degrees: exceeding this may cause output power derating.
- To avoid overheating, always ensure the flow of air around the inverter is not blocked. A minimum clearance of 300mm(11.8in) should be kept between inverters or objects and 500mm(19.6in) clearance between the bottom of the machine and the ground.

- Visibility of the LEDs and LCD should be considered.
- Adequate ventilation must be provided.

NOTE:

Nothing should be stored on or placed against the inverter.

4.2 Mounting the Inverter

Dimensions of mounting bracket:

Once a suitable location has been found according to 4.1 using figures 4.3 and 4.4 mount the wall bracket to the wall.

The inverter shall be mounted vertically.

The steps to mount the inverter are listed below:

1. Select the mounting height of the bracket and mark the mounting holes. For brick walls, the position of the holes should be suitable for the expansion bolts.

The inverter must be mounted vertically.

2.Lift up the inverter (be careful to avoid body strain) and align the back bracket on the inverter with the convex section of the mounting bracket. Hang the inverter on the mounting bracket and ensure the inverter is secure (see Figure 4.5)

NOTE:

The installation shall meet the National Electrical Code, ANSI/NFPA 70 and Canadian Electrical Code wiring methods.

Cross-sectional	Functionality	Where to connect
12-10AWG, 90°C Copper	PV DC source	From PV strings to terminal "DC+" and "DC-"
10-8AWG, 90°C Copper	Battery DC source	From Battery modules to terminal "BAT+" and "BAT-"
8-4AWG for 5-9K system, 6-4AWG for 10K system, 90°C Copper	AC Grid connection	From incoming AC distribution box to terminal AC-GRID "L1" and "L2"
10-4AWG, 90°C Copper	AC Backup connection	From backup loads to terminal AC-BACKUP "L1", "L2" and "N"
8-4AWG, 90°C Copper	Grounding connection (Dimension depends on AC backup cables and AC grid cables)	From AC groundings to copper bar inside the wiring box
22-16AWG, 90°C Copper	Communication between inverter to Meter	From meter to terminal MT "A" and "B". Details refer to "4.2.2 Install the energy meter"
22-16AWG, 90°C Copper	Communication between inverter to Battery	From battery to terminal CAN "L" and "H". Details refer to 4.2.3 Install the battery
22-16AWG, 90°C Copper	Not Applicable in these systems	Not Applicable in these systems
Same as PE cable	Ground the inverter cover	From grounding screw on the inverter external cover to the ground
Pre-assembled Plug	Modbus/Sunspec Communication between the system and the Solis monitoring portal	4-pin COM port at the bottom of the inverter. (Detailed info please refer to Solis datalogger user manual)
	Cross-sectional Dimension 12-10AWG, 90°C Copper 10-8AWG, 90°C Copper 8-4AWG for 5-9K system, 6-4AWG for 10K system, 90°C Copper 10-4AWG, 90°C Copper 22-16AWG, 90°C Copper 22-16AWG, 90°C Copper 22-16AWG, 90°C Copper 22-16AWG, 90°C Copper Same as PE cable Pre-assembled Plug	Cross-sectional DimensionFunctionality12-10AWG, 90°C CopperPV DC source10-8AWG, 90°C CopperBattery DC source8-4AWG for 5-9K system, 6-4AWG for 10K system, 90°C CopperAC Grid connection90°C CopperAC Backup connection10-4AWG, 90°C CopperAC Backup connection8-4AWG, 90°C CopperGrounding connection (Dimension depends on AC backup cables and AC grid cables)22-16AWG, 90°C CopperCommunication between inverter to Meter22-16AWG, 90°C CopperCommunication between inverter to Battery22-16AWG, 90°C CopperNot Applicable in these systemsSame as PE cableGround the inverter coverPre-assembled PlugModbus/Sunspec Communication portal

4.3 PV Terminals

Please ensure the following before connecting the inverter:

- Ensure the voltage of the PV string will not exceed the max DC input voltage (500Vdc). Violating this condition will void the warranty.
- Ensure the polarity of the PV terminals are correct.
- Ensure the DC-switch, battery, AC-BACKUP, and AC-Grid are all in their off-states.
- Ensure the PV resistance to ground is higher than 20K ohms.

PV wire requirements: 12-10AWG 90°C Copper

4.4 Assembling the AC Terminals

There are two AC terminals and the assembly steps for both are the same. Remove the AC connector parts from the packaging.

1. Ensure you use a cable within the correct specifications as shown in the image below.

AC-BACKUP	AC-GRID (For 5~9KW)	AC-GRID (For 10KW)
10~4 AWG	8~4 AWG	6~4 AWG
10 AWG	8 AWG	6 AWG
xposure Length 18mm		
	AC-BACKUP 10~4 AWG 10 AWG	AC-BACKUP (For 5~9KW) 10~4 AWG 8~4 AWG 10 AWG 8 AWG 18mm

- 2. Lead the AC cable through the cable gland and the housing.
- 3. Remove a length of 40mm of the cable jacket and strip the wire insulation to a length of 18 19mm.
- 4. Each of the terminals are labeled. Ensure that the correct conductor is fastened (2 N.m. torque) to the correct terminal.
- 5. Ensure the rib of the terminal block and the groove on the housing engage correctly and a "click" is heard or feltt.

WARNING:

Observe the terminal layout of terminal block.

Do not connect the phase lines to "PE" terminal, otherwise the inverter will not function properly.

Note:

AC Grid and AC Backup output 240V L1-L2. For 120V load, auto-transformer is required in the system. For detailed information about the autotransformer please refer to Solis auto-transformer quick installation guide.

Over-Current Protection Device (OCPD) for the AC side

To protect the inverter's AC connection line, we recommend installing a device for protection against over-current and leakage, with the following characteristics noted in Table 4.2:

Inverter	Rated voltage(V)	Rated output current (Amps)	Current for protection device (A)
RHI-1P5K-HVES-5G	208/240	24/21	30/30
RHI-1P7.6K-HVES-5G	208/240	36.5/31.7	50/40
RHI-1P10K-HVES-5G	208/240	48/41.7	60/60
Table 4.2 Rating of grid OCPD			

4.5 Battery Fuse Terminals

Battery power cables should be connected to the battery fuse terminals in the wiring box through the BAT conduit.

Cross sectional area	10~8 AWG
Exposure length	12 mm
Torque	2~4N.m

Table 4.3 Battery power cable requirement

Note:

The battery fuses in the wiring box are replaceable. The replacement must be done by Solis authorized technicians only. Fuse specification: 600V, 30A.

Note:

Before connecting the battery, please carefully read the user manual of the battery and perform the installation exactly as the battery manufacturer requests.

4.6 Communication Terminals

From left to right, the communication terminals consist of ten ports.

NO.	Symbol	Wire Requirement	Comments
1	CANL		
2	CANH		Battery communication
3	ENABLE		depends on different
4	GND		Refer to Section 4.6.2 for
5	BMS485B	22-16AWG	details.
6	BMS485A	Exposure length: 11mm	
7	RS485B		DC405 Communication
8	RS485A		RS485 Communication
9	MTR485B		Matan Camanunia atian
10	MTR485A	1	weter Communication

Cable connection steps:

1. Use slot type screwdriver to press the block on the top.

2. Insert the exposed copper part of the cable into the terminal

4.6.1 Meter Communication

Communication Terminals: MTR485B and MTR485A.

The Solis RHI-HV 5G series inverter integrates export power control function which requires an external meter to detect the power flow.

The following figure shows the corresponding connection of the meter.

4.6.2 Battery Communication

Communication Terminals: **CANL,CANH,ENABLE,GND,BMS485B,BMS485A** Different battery types have different communication requirements.

•BYD Battery

For BYD Battery-BoxH, CANL and CANH are used. The detailed connection is shown in the following figure.

LG Battery

For LG RESU10H Type R, ENABLE, GND, BMS485B and BMS485A are used. The detailed connection is shown in the following figure.

Note:

When working with LG batteries under OFF-GRID condition, due to the circuit design of the battery, some specific loads may cause the inverter to give battery alarm or protection. It is a normal situation and will be recovered when the grid is available.

4.6.3 RS485 Communication

Communication Terminals: RS485B and RS485A.

This pair of RS485 terminals is reserved for external communication.

4.6.4 Monitoring/Upgrade Communication.

Communication Port: COM2.

COM2 is a 4-pin RS485 communication port which is used to connect Solis datalogging stick.

If necessary, firmware upgrades can be done through an upgrade tool connecting to this port.

4.7 External Ground Connection

An external ground connection is provided at the right side of inverter. Prepare OT terminals: M4. Use proper tooling to crimp the lug to the terminal. Connect the OT terminal with ground cable to the right side of inverter. The torque is 2N.m.

4.8 LED Indicators

There are three LED indicators on the RHI inverter (Red, Green, and Orange) which indicate the working status of the inverter.

5.1 Initial Display

When powering up the inverter for the first time, it is required to set the language. Press "ENT" to select.

Figure 5.2 Set Language

After setting the language, press "ESC" to access the main page.

Figure 5.3 Main Page

On the main page,

Press "ESC" : View the yield data on monthly bar charts. Then use "UP" and "DOWN" to change the date and "ENT" to move the cursor.

Press "UP" or "DOWN": View different status on the top left of the main page.

Press "ENT": Enter the main menu.

	Solar Power: When solar power is generated, an arrow indicates the direction of the power flow, and the value is shown above the arrow.
	Battery: When the battery is connected successfully, it will display "COM OK" and the battery SOC arrow and flow will be shown. If the battery is not connected it will show "COM FAIL".
	Loads: Loads connected to the AC Grid port that will shutdown in the event of a grid outage.
2526 <u></u> *	Smart Meter: When the smart meter is connected successfully, it will display "RS485 OK", otherwise "RS485 Fail".
Ĭ,	Critical Loads: Loads connected to the AC backup port which will be supported by battery and solar during a grid outage.
ŧ	Grid: The arrow and value indicate the export/import power of the hybrid system.

5.2 Main Menu

There are four submenus in the Main Menu:

1. Information 2. Settings 3. Advanced Information 4. Advanced Settings

Figure 5.4 Main Menu

5.3 Information

In the information section, operating data and information data can be viewed. Sub-sections include:

1.General Info 2.System Info 3.Energy Records 4.BMS Info 5.Meter Info The example displays are shown in the following figures. Values are for reference only.

> Information 2015-02-23 19 35 General Info System Info Energy Records BMS Info Meter Info

> > Figure 5.5 Information

General Info		2015-02-23	1935
Inverter SN : Device Status : Battery Status : Backup Status : Grid Status : Wakeup Status :	000F80017A20515 Waiting Waiting Off Grid Mode Undone	DRM NO. : 0 Model NO. : 0 Software Ver. : 0	8 0 40000
ESC			

Figure 5.6 General Info

System Info	2015-02-23 1935
Solar Power: 00000 Solar Voltage1: 000.0 Solar Voltage2: 000.0 Solar Current1: 00.0A Solar Current2: 00.0A	0W Grid Power: +00.0kW V Grid Voltage: 000.0V V Grid Frequency: 00.00Hz Battery Voltage: 000.0V Backup Voltage: 000.0V Charge Power: +00.0kW
ESC	

Figure 5.7 System information

Energy Record	s	2	015-02-23 1935
Total Energy : Today : Yesterday :	0000008kWh 0000.0kWh 0000.0kWh	This Month : Last Month : This Year : Last Year :	0000kWh 0000kWh 0000000kWh 0000008kWh
ESC			

Figure 5.8 Energy information

BMS Info	2015-02-23 1935
Battery Voltage : 000.0V Battery Current : +00.0A Charge Limit : 000.0A Discharge Limit : 000.0A SOC Value : 000% SOH Value : 000%	BMS Status: CAN Fail
ESC	

Figure 5.9 BMS information

Meter Info	2015-02-23 1935
External : Meter VoltageL1 : 000.0V Meter CurrentL1 : 00.00A Meter VoltageL2 : 000.0V Meter CurrentL2 : 00.00A Meter Power : +000000W Meter Energy : 000000.00kWh Output Energy : 000000.00kWh	Internal : Meter Voltage : 000.0V Meter Current : 00.00A Meter Power : +000000W Meter Energy : 000000.00kWh Output Energy : 000000.00kWh
ESC	

Figure 5.10 Meter Info

NOTE:

Meter Power/Grid Power: Positive value indicates exporting power to the grid. Negative value indicates importing power from the grid. Charge Power: Positive value indicates charging, negative value indicates discharging.

5.4 Settings

In the "Settings" section, Time/Date, Slave address and language can be modified.

Figure 5.11 Setting

5.4.1 Set Time/Date

Set the time and date on the inverter. Must set this according to local time as it affects the daily yield calculation. (If Solis monitoring system is used, must set the correct time zone of the system, otherwise datalogger will update the inverter time based on the time zone of the system.) Press "UP" and "DOWN" to change the value. Press "ENT" to move the cursor.

Press "ESC" to save the change.

Figure 5.12 Set Time

5.4.2 Set Address

Set the slave address of the inverter. The default address is 01.

Set Address		2015-02-23	1935
	Slave Addres	s : <mark>01</mark>	
	YES= <ent> NO=<</ent>	ESC>	
ESC	UP	DOWN	ENT

Figure 5.13 Set Address

5.4.3 Set Language

Set system language. Chinese and English are available.

Set Language		2015-02-23	1935
	English		
	中文		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.14 Set Language

5.5 Advanced Information

Detailed information can be viewed in this section:

- 1. Alarm Message 2. Warning Message 3. Running Status
- 4. Communication Data 5. Yield Profile

Figure 5.15 Advanced information

5.5.1 Alarm Message

40 pages of latest alarm messages (5 per page). Alarm message shows the alarm that will lead to inverter shutdown.

Alarm Message		2015-02-23 1935
Message	Date/Time	Date
NO-Grid	02-23 19:35	0000
NO-Grid	02-23 19:34	0000
NO-Grid	02-23 19:34	0000
NO-Grid	02-23 19:24	0000
NO-Grid	02-23 18:22	0000
	01/40	
ESC	UP DOWN	ENT

Figure 5.16 Alarm Message

5.5.2 Warning Message

10 pages of latest warning messages (5 per page).

Warning message shows the warning that is abnormal but will not lead to inverter shutdown.

Warning Message		2015-02-23 19	935
Message	Date/Time NO message.	Data	
ESC:	UP	DOWN E	NT

Figure 5.17 Warning Message

5.5.3 Running Status

This function is for maintenance person to get running message such as internal temperature, Standard NO. etc.(Values are for reference only).

Running Status		2015-02-23 1935
	General Status	
	Advanced Status	
ESC		

Figure 5.18 Running Status

5. Operation

General Status		2015-02-23	19 35
DC Bus Voltage : Power Factor : Power Limit : Inverter Temperature : Grid Standard :	000.0V -0.00 000% +000.0degC		
ESC			

Figure 5.19 General Status

Advanced Status		2015-02-23	3 19 35
Grid Filter NO. : Ground Voltage :	00 000.0V	Relay-Fault Func. : ILeak-Fault Func. : AFCI-Fault Func. : PV-G-Fault Func. : OV-F-Fault Func. : GRID-INTF.02 Func. :	RUN RUN RUN RUN RUN
ESC			

Figure 5.20 Advanced Status

5.5.4 Communication Data

Internal communication data can be viewed in this section. For maintenance person only. Values are for reference only.

Commun	ication Data	2015-02-23	19 35
01-10:	86 61 A1 00 01 50 8A 06 1E 00		
11-20:	D5 05 1E 00 00 00 00 00 00 00		
21-30:	00 00 00 00 00 00 00 00 00 00		
31-40 :	09 02 00 00 00 00 B8 10 C0 00		
41-50:	20 5C 80 01 00 00 43 00 07 02		
51-60:	01 00 04 00 6D 04 E6 05 01 00		
61-70 :	DC 05 1E 00 59 06 1E 00 D4 03		
71-80:	10 27 00 00 00 00 00 00 00 00 00		
81-90:	00 00 00 00 00 00 60 00 00 00		
ESC			

Figure 5.21 Communication Data

5.5.5 Yield Profile

The yield profile includes: Monthly Energy, Yearly Energy and Total Energy. All the historical energy generation records can be easily viewed in this section.

Yield Profile		2015-02-23	1935
	Monthly Energy		
	Yearly Energy		
	Total Energy		

Figure 5.22 Yield Profile

5.6 Advanced Settings - Technicians Only

NOTE:

This function is for authorized technicians only. Improper access and operation may result in abnormal results and damage to the inverter. Password required – restricted access – authorized technicians only. Unauthorized access may void the warranty.

Select Advanced Settings from main menu, the LCD screen show the password is needed:

Password 2015-02-23 19	935
Please Input The Current Password	
× × × ×	
ESC UP DOWN E	NT

Figure 5.23 Enter Password

Press "DOWN" to move the cursor.

Press "UP" to change the number.

Press "ENT" to enter the restricted section.

Select Advanced Settings from the Main Menu to access the following options:

Figure 5.24 Advanced Settings

5.6.1 Select Standard

This function is used to select corresponding grid standards.

Please refer to the actual LCD setting for the grid standard options.

Press the UP/DOWN keys to select the standard (UL-240V, UL-208V, R21P3-240,

R21P3-208, ISONE240, ISONE208, MEX-CFE, User-Def, etc.).

Press the ENTER key to confirm the setting.

Press the ESC key to cancel changes and return to previous menu.

There are 6 settings for USA and CSA market, UL-240V, UL-208V, R21P3-240, R21P3-208, ISONE240 and ISONE208. The default grid setting is UL-240V.

Select Standard		2015-02-23	19 35
	Select Standard:		
	UL-240V		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.25 Select Standard

Press "UP" and "DOWN" to go through the list.

Press "ENT" to check the parameters, press "ENT" again to select the standard.

5.6.2 Switches

This function is used to start or stop the generation of the inverter (see Figure 5.26).

Switches		2015-02-23	1935
	ON		
	OFF		
	STOP		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.26 Set Switches

NOTE: ON: AC Relay is ON. OFF: AC Relay is OFF. Stop: AC Relay is ON, but power generation.

5.6.3 Battery Control

This section is used to select the corresponding battery and set the battery wakeup function.

Battery Control		2015-02-23	19 35
	Battery Select		
	Battery Wakeup		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.27 Battery Control

5.6.3.1 Battery Select

This product is compatible with the following battery modules:

Brand	Model	Setting
BYD	Battery-BOXH5.0/7.5/10 (UL 9540)	Select"B-BOX"
LG Energy Solution	RESU10H (UL 9540)	Select"LG Chem"
Soluna	15K PACK HV	Select"Soluna"

If hybrid inverter is not connected to a battery, then select "No Battery" to avoid alarms. For above compatible battery modules, Only two parameters need to be defined:

- * OverDischg SOC (10%~40%, default 20%)
- --Inverter will not discharge the battery when the OverDischg SOC is reached.
- Battery self-discharge is unavoidable, SOC may go lower than the limit if the battery can't get charged for a long period of time.
- * ForceCharge SOC (5%~OverDischg SOC, default 10%)
- --To prevent the battery going into sleep mode, when the ForceCharge SOC is reached, inverter will charge the battery using the power from either PV or Grid.

Figure 5.28 Battery Select

Figure 5.29 Over Discharge SOC.

Battery Sele	ct	2015-02-23	19 35
F	orceCharge S	OC: 005%	
	-		
	YES= <ent></ent>	NO= <esc></esc>	
ESC	UP	DOWN	ENT

Figure 5.30 ForceCharge SOC

5.6.3.2 Battery Wakeup

Battery Control		2015-02-23	19 35
	Battery Select		
	·		
	Battery Wakeup		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.31 Battery Wakeup

This function should be activated only after the installation. In the case of a low battery voltage shutdown, the inverter will shut-down. This setting can be enabled, so when the inverter detects PV or grid it wakes up the battery. This function conflicts with the battery reverse polarity protection(If the installer connects cables with wrong polarity, the inverter can protect itself from damage). To avoid the possible damage during installation, do not activate battery wakeup function before finishing the first commissioning.

5.6.4 Backup Control

This section is used to set the configuration of the backup port.

Backup Control		2015-02-23	19 35
	Backup ON/OFF		
	Backup Settings		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.32 Backup Control

5.6.4.1 Backup ON/OFF

This switch can enable/disable the electrical connection of the backup port.

Backup ON/OFF		2015-02-23	19 35
	Backup ON		
	Backup OFF		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.33 Backup ON/OFF

5.5.4.2 Backup Settings

This section shows the parameter of the backup port.

Backup Voltage	: 230.00V		
Backup Freque Voltage Droop :	ncy :50.0Hz Disable		
	SELECT= <ent></ent>	DONE= <esc></esc>	
ESC	UP	DOWN	ENT

Figure 5.34 Backup Settings

5.6.5 Storage Energy Set

There are two settings available in this section: Meter select and Storage Mode Select.

Srorage Energy Set		2015-02-23	19 35
	Meter Select		
	Storage Mode Select		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.35 Storage Energy Set

5.6.5.1 Meter Select

The setting is used to select the meter type based on the actual configuration.

NOTE:

Select "1Ph Meter" to be compatible with the meter that comes with the inverter package.

The "3Ph Meter" is not available yet which is reserved for future development.

Figure 5.36 Storage Energy Set

5.6.6.2 Storage Mode Select

There are two optional modes:

1. Time Charging 2. Off-grid Mode

The default mode is called "AUTO" mode (which is not shown and can not be selected). The "AUTO" mode logic is: Store excess PV energy into the battery and then use it to support loads instead of exporting to the grid. (Maximize system self-consumption rate). To change back to the default mode, simply set all the other modes as OFF.

Figure 5.37 Storage Mode Select

Time Charging Mode:

"Optimal Income" is the switch to turn on/off the Time Charging Mode.

Customer can define the charge/discharge current as well as when to charge/dischage the battery.

Time Charging		2015-0	2-23 1935
Optimal Income I_Charge : I_Discharge :	: Stop 050.0A 050.0A		
T_Charge: T_Discharge:	HH MM HH MM 22:00 08:00 08:00 22:00	Total Time : Total Time :	HH MM 10:00 14:00
	NEXT= <ent> DONE=</ent>	<esc></esc>	

Figure 5.38 Time Charging

Off Grid Mode:

Enable the mode for off-grid systems.

The AC Grid Port must be physically disconnected.

Figure 5.39 Off-Grid Mode

5.6.6 STD.Mode Settings

These settings are reserved for maintenance personnel and technicians. Do not change anything without instructions.

Selecting "STD Mode. Settings" displays the sub-menu shown below:

1. Working Mode Set 2. Ramp Rate Limit 3. Freq Derate Set

4. 10mins Voltage Set 5. Voltage PCC Set 6. Initial Settings

Figure 5.40 STD.Mode Settings

5.6.6.1 Working Mode Set

There are TWO situations with different grid standards selected.

5.6.6.1.1 With UL Standard selected

NOTE: The following modes are for "UL-240V", "UL-240V-A".

NOTE: Parameter Accuracy:

Voltage:1%; Current:1%; Frequency:0.06Hz; Power:4%; Time:0.12s; PF:0.01.

Solis US version inverters have Seven working modes:

1. NULL 2. Volt-watt 3. Volt-Var 4. Fixed-PF 5. Reac-power 6. P-factor 7. VgWatt-UL Based on UL1741SA, working mode 1,3,4,7 can be used by grid operator.

1.NULL

Description: Inverter is not under any working mode.

2. Volt-Watt (Not Required)

Description: Inverter will change the active output power based on voltage change. Note: This Setting is NOT required by UL1741SA Standards.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

3. Volt-Var (Default)

Description: Inverter will change the reactive output power based on voltage change.

Default Settings for UL1741SA:

Q4: (-60%-0%) Default -30%
V2: (192-240V) Default 236V
V4: (240-288V) Default 264V
V2: (166-208V) Default 205V
V4: (208-240V) Default 229V

Volt-Var	2015-02-23 1935	
Voltage1: Voltage2: Voltage3: Voltage4: Leading:	210.0V 236.0V 243.0V 264.0V +030%	
Leading:	-030% SET= <ent> DONE=<esc></esc></ent>	

Figure 5.42 Volt-Var

4.Fixed-PF

Description: Inverter will output power with fixed power factor. Setting Range: -0.8 to +0.8 Default value is PF = 1

> Fixed-PF 2015-02-23 1935 Power Factor: +1.00 YES=<ENT> NO=<ESC>

Figure 5.43 Fixed-PF

5. Reac-Power (Not Required)

Description: Inverter will generate reactive power based on changing output power. Note: This Setting is NOT required by UL1741SA Standards.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

6. P-Factor (Not Required)

Description: Inverter will change power factor based on changing output power. Note: This Setting is NOT required by UL1741SA Standards.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.VgWatt-UL

Description: Inverter will change the active output power based on voltage change. Note: This is the Volt-Watt Setting for UL1741SA Standards.

5.6.6.1.2 With Rule21 Standard selected

Rated 240V Grid

V1:less than V2

V2:less than Vstart

- V3 (Vstart): (240-288V) Default264V
- V4 (Vstop): (264-312V) Default 288V

P1:100% P2:100% P3:100% P4:0%

Rated 208V Grid

V1:less than V2

V2:less than Vstart

V3 (Vstart): (208-250V) Default229V

V4 (Vstop): (229-270V) Default 250V

P1:100% P2:100% P3:100% P4:0%

Volt-Var		2015-02-23 1935
Voltage1: P-Limit1: Voltage2: P-Limit2: Voltage3: P-Limit3: Voltage4: P-Limit4:	210.0V 100% 236.0V 100% 264.0V 100% 288.0V 000%	
	SET= <ent> DONE=<esc></esc></ent>	

Figure 5.46 Vgwatt-UL

The following modes are for "R21P3-240", "R21P3-24A".

NOTE:

Parameter Accuracy:

Voltage:1%; Current:1%; Frequency:0.06Hz; Power:4%; Time:0.12s; PF:0.01.

Solis US version inverters have Ten working modes:

1. NULL 2. Volt-watt 3. Volt-Var 4. Fixed-PF 5. Reac-power 6. Power-PF 7. VgWatt-UL Based on Rule21, working mode 1,2,3,4 can be used by grid operator.

NOTE:

The other three working mode"P1-V-Watt","P1-V-Var" and "P1-V-P&V-Q" are NOT applicable for settings.

1.NULL (Mode Reset)

Description: Inverter is not under any working mode.

2. Volt-Watt

Description: Inverter will change the active output power based on voltage change. Note: This is the Volt-Watt Setting for Rule21 Standards.

Default Settings for Rule21 Standards:

Rated 240V Grid V1:less than Vstart V2 (Vstart): (240-288V) Default 254V V3 (Vstop): (240-288V) Default 264V V4: larger than Vstop P1:100% P2:100% P3:0% P4:0%

Rated 208V Grid V1:less than Vstart V2 (Vstart): (208-250V) Default 221V V3 (Vstop): (208-250V) Default 229V V4: larger than Vstop P1:100% P2:100% P3: 0% P4:0%

3. Volt-Var

Description: Inverter will change the reactive output power based on voltage change.

Default Settings for Rule21 Standard:

Q1: (0-60%) Default +30% Q4: (-60%-0%) Default -30%	
Rated 240V Grid	
V1:(192-264V) Default 220.8V V2: (192-264V) Default 232.1V	
V3:(240-288V) Default 248.0V V4: (240-288V) Default 256.8V	
Rated 208V Grid	
V1:(166-229V) Default 191V V2: (166-229V) Default 201V	
V3:(208-250V) Default 215V V4: (208-250V) Default 223V	

Voltage1: Voltage2:	220.8V	
Voltage3: Voltage4: Leading: Leading:	232.1V 248.0V 256.8V +030% -030%	
	SET= <ent> DONE=<es< th=""><th>SC></th></es<></ent>	SC>

Figure 5.49 Volt-Var

4.Fixed-PF

Description: Inverter will output power with fixed power factor. Setting Range: -0.8 to +0.8 Default value is PF = 1

Figure 5.50 Fixed-PF

5. Reac-Power (Not Required)

Description: Inverter will generate reactive power based on changing output power. Note: This Setting is NOT required by Rule21 Standards.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

6. P-Factor (Not Required)

Description: Inverter will change power factor based on changing output power. Note: This Setting is NOT required by Rule21 Standards.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.VgWatt-UL (Not Required)

Description: Inverter will change the active output power based on voltage change. Note: This Setting is NOT required by Rule21 Standards.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

8. Enable both Volt-Var and Volt-Watt modes

Description: Rule21 requires both Volt-var and Volt-watt modes can be enabled.

To set both modes (Volt-var in high priority)

Step 1: Select and set Volt-watt mode at first.

Step 2: Enter "Working Mode" again and select and set Volt-var mode then.

Step 3: To check the priority, a new mode will appear as "V-Q & V-P" which indicates (Q) Volt-var is in high priority.

Figure 5.51 Work Mode

To set both modes (Volt-watt in high priority)

Step 1: Select and set Volt-var mode at first.

Step 2: Enter "Working Mode" again and select and set Volt-watt mode then. Step 3: To check the priority, a new mode will appear as "V-P & V-Q" which indicates (P) Volt-watt is in high priority.

Figure 5.52 Work Mode

To reset dual-mode or exit the dual-mode situation

Step 1: Select "Null" mode at first.

Step 2: Enter "Working Mode" again. Redo above dual-mode setting steps to reset OR set other modes to exit dual-mode situation.

NOTE:

modes.

To check the Volt-watt and Volt-var priority, simply enter the working

V-Q&V-P indicates Volt-Var First V-P&V-Q indicates Volt-Watt First

5.6.6.2 Ramp Rate Limit

This function is used for changing power ramp up rate. When the inverter initializes or string MPPT changes, the ramp up rate is limited.

The default setting is stop (disable).

The setting range is from 10% to 600%, This will change the power change rate per minute. If these values are changed the inverter may not conform to UL 1741 SA or IEEE 1547 standard.

Figure 5.53 Power Rate Limit

5.6.6.3 Freq Derate Set

This setting is applicable when UL Standards are selected.

Mode 04 is used for UL 1741 SA frequency derating.

Mode 08 is used for Rule21 frequency derating.

Within this mode the user can set the frequency start, stop points, etc,.

Figure 5.54 Freq Derate Set

5.6.6.4 10mins Voltage Set

This function is disabled and not used for the US.

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

5.6.6.5 Initial Settings

This setting will allow the working modes from 6.5.8.1 to 6.5.8.4 to be set back to default.

STD.Mode Settings		2015-02-23	19 35
	Working Mode Default Ramp Rate Default Freq Derate Sdefault 10minVoltage Default		
	DRM ON/OFF		

Figure 5.55 Initial Settings

5.6.6.7 Voltage PCC Set

Set the voltage at the PCC point.

This setting is required by RULE 21 requirements.

PCC: Point of Common Coupling, the point where a Local EPS is connected to an Area EPS.

NOTE:

This function is for maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

5.6.7 Software Update

The software update includes the HMI and DSP. Corresponding firmware version can be checked in this setting. Press "ENT" to enter the upgrading mode.

Software Update		2015-02-23	19 35
	HMI Update		
	DSP Update		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.56 Software Update

5.6.8 Export power Set

This function is to set the export power control.

1.Backflow Power. 2. ON/OFF. 3.Failsafe ON/OFF

Setting 1 and 3 are only valid when Setting 2 is set to "ON"

Export power Set		2015-02-23 19 35
	Backflow Power	
	ON/OFF	
	FailSafe ON/OFF	

Figure 5.57 Export power Set

5.6.8.1 Backflow Power

Determine the allowed backfeed power. (System export to the grid)

Figure 5.58 Backflow Power

5.6.8.2 ON/OFF

Enable/Disable the function.

ON/OFF		2015-02-23	1935
	ON		
	OFF		
	YES= <ent> NO=<esc></esc></ent>		

Figure 5.59 ON/OFF

5.6.8.3 FailSafe ON/OFF

When this Failsafe function is ON, the inverter will shutdown once it loses communication with the meter in case of any backflow power exceeds the limit.

Figure 5.60 FailSafe ON/OFF

5.6.9 Calibrate

Warranty or maintenance may result in resetting the total generation data.

This function allow the maintenance personnel to load the total generation data of the original inverter into the replacement.

By using our data monitoring hardware, the data on monitoring website can automatically synchronize with the preset total generating power of inverter.

Calibrate		2015-02-23	19 35
	Total Energy		
	Power Parameter		

Figure 5.62 Total Energy

Figure 5.63 Power Parameter

Figure 5.61 Calibrate

5.6.10 Reset Password

Reset Password: In this menu, user can reset the inverter password, but the admin password is always valid.

Reset Password		2015-02-23	19 35
Please In	put New Passv	word	
×	X X	×	
YES=	<pre><<ent> NO=<esc></esc></ent></pre>		
ESC: UP	DOWN		ENT

Figure 5.64 Reset Password

5.6.11 Restart HMI

This function is to reboot the LCD screen.

6.1 Preparation of Commissioning

- Ensure all the devices are accessible for operation, maintenance, and service.
- Check and confirm that the inverter is firmly installed.
- Space for ventilation is sufficient for one inverter or multiple inverters.
- Nothing is left on the top of the inverter or battery module.
- Inverter and accessories are correctly connected.
- Cables are routed safely and protected against mechanical damage.
- Warning signs and labels are correctly (properly) affixed and durable.

6.2 Commissioning Procedure

If all the items mentioned above meet the requirements then proceed as follows to start up the inverter for the first time.

Step1: Switch on the AC circuit breaker

Step2: Switch on the hybrid inverter DC switch (Single switch for both PV and battery)

Step3: Set inverter "Time/Date", "Select Standard", "Battery Select", "Meter Select",

"Storage Mode Select" by following the instructions in Section 5 of the manual.

Step4: If the system is working properly, the "Power" and "Generation" LED lights will be ON. If the system is working abnormally, the "Power" light will be ON and "Alarm" light will be flashing.

Check the hybrid inverter troubleshooting list to fix the problem.

NOTE:

Before turn off the DC switch, please ensure the loads and grid are OFF or disconnected and the PV is OFF as well, otherwise it may cause damages on the DC switch.

7. Troubleshooting

Solis RHI Series inverter does not require any regular maintenance. However, cleaning the heatsink will help the inverter dissipate heat and increase the lifetime of inverter. The dirt on the inverter can be cleaned with a soft brush.

CAUTION:

Do not touch the surface when the inverter is operating. Some parts may be hot and could cause burns. Turn OFF the inverter (refer to Section 6.2) and let it cool down before you do any maintenance or cleaning of inverter.

The LCD and the LED status indicator lights can be cleaned with cloth if they are too dirty to be read.

Never use any solvents, abrasives, or corrosive materials to clean the inverter.

The inverter has been designed in accordance with international grid-tied standards for safety and electromagnetic compatibility requirements. Before being delivered to the customer the inverter is subjected to several tests to ensure reliability operation and reliability.

In case of a failure the LCD screen will display an alarm message. In this case, the inverter may stop feeding energy into the grid. The alarm descriptions and their corresponding alarm messages are listed in Table 7.1:

When faults occur, the "Fault" state will be shown on the main screen. Follow the steps below to determine which fault has occurred.

Steps: Enter \rightarrow Down \rightarrow Advanced Information \rightarrow Enter \rightarrow Alarm Message. Step1: Press ENTER.

Step2: Press DOWN to select Advanced Information, then press ENTER.

7. Troubleshooting

Step3: Press DOWN to select Alarm Message, then press ENTER.

Advanced Information	2015-02-23	1935
Alarm Message		
Warning Message		
Running Status		
Communication Data		
Yield Profile		

Alarm Message	Failure description	Solution
ARC-FAULT	ARC detected in DC circuit	1. Check if there is an arc in the PV connection and restart inverter.
AFCI Check FAULT	AFCI module self check fault	1. Restart inverter or contact installer.
DCinj-FAULT	High DC injection current	1. Restart inverter or contact installer.
DSP-B-FAULT	Comm. failure between main and slave DSP	1. Restart inverter or contact installer.
DC-INTF	DC input overcurrent	 Restart inverter. Identify and remove the string related to the faulty MPPT. Change power board.
G-IMP	High grid impedance	 User design function allows the protection limit to be adjusted if it is allowed by electrical company.
GRID-INTF01/02	Grid interference	1. Restart inverter.
IGBT-OV-I	Over IGBT current	2. Change power board.
IGFOL-F	Grid current tracking fail	
IG-AD	Grid current sampling fail	1. Restart inverter or contact installer.
ILeak-PRO 01/02/03/04	leakage current protection	1. Check AC and DC connection. 2. Check inverter inside cable connection.
INI-FAULT	Initialization system fault	1. Restart inverter or contact installer.
LCD show initializing all the time	Can not start-up	 Check if the connectors on the main board or power board are secure. Check if the DSP connection to the power board is secure.
NO-Battery	Unconnected battery	 Ensure the battery is connected properly. Verify the output battery voltage is correct.
Nopower	Inverter no power on LCD	 Check PV input connections. Check DC input voltage (single phase >120V, three phase >350V). Check if PV+/- is reversed.
NO-GRID	No grid voltage	 Check connections and grid switch. Verify the grid voltage is correct on the AC Terminals inside the inverter wiring box.
OV-BUS	Over DC bus voltage	 Check inverter inductor connection. Check driver connection.

7. Troubleshooting

Alarm Message	Failure description	Solution
OV-DC01/02/03/04	Over DC voltage	1. Reduce the module number in series.
OV-DCA-I	DC input overcurrent	 Restart inverter. Identify and remove the string of the faulted MPPT. Change power board.
OV-G-V01/02/03/04	Over grid voltage	 Resistance of AC Cable is too high. Increase the gauge of grid cables. Adjust the protection limit if it is permitted by electrical company.
OV-G-I	Over grid current	1. Restart inverter. 2. Change power board.
OV-G-F01/02	Over grid frequency	 User design function allows the protection limit to be adjusted if it is permitted by electrical company.
OV-IgTr	AC side transient overcurrent	
OV-ILLC	LLC hardware overcurrent	1. Restart inverter. 2. Return-factory repair.
OV-VBackup	Backup overvoltage fault	
OV-TEM	Over Temperature	 Check inverter surrounding ventilation. Determine if there is direct sunlight on the inverter during hot weather.
OV-Vbatt1	The detection of battery overvoltage	 Verify the protection point for over voltage is set correctly. Restart inverter.
OV-Vbatt-H	Battery overvoltage hardware fault	 Check if any part of the battery input circuit is tripped, ie. battery fuses, battery circuit breaker. Restart inverter.
Over-Load	Backup overload fault	 Check the load of Backup port is over rating output power or not. Reduce the load of Backup port, then restart inverter.
PV ISO-PRO01/02	PV isolation protection	 Remove all DC input, reconnect and restart inverter one by one. Identify which string cause the fault and check the isolation of the string.
RelayChk-FAIL	Relay check fail	1. Restart inverter or contact installer.

Alarm Message	Failure description	Solution
UN-BUS01/02	Under DC bus voltage	 Check inverter inductor connection. Check driver connection.
UN-G-F01/02	Under grid frequency	1. Use user define function to adjust the
UN-G-V01/02	Under grid voltage	electrical company.
12Power-FAULT	12V power supply fault	1. Restart inverter or contact installer.

Table 7.1 Fault message and description

NOTE:

If the inverter displays any alarm message as listed in Table 7.1; please turn off the inverter and wait for 5 minutes before restarting it . If the failure persists, please contact your local distributor or the service center.

If you have any technical problems with the hybrid system, please contact the Solis after-sale service. It is recommended to gather the following information before making the contact in order to get timely support.

Item	Details	Supplemental Info
Inverter SN		SN from nameplate
Inverter Firmware Version		6 digits of number or letter (Check the inverter user manual for the path)
Alarm message		Code showing on the inverter LCD
DC connections		Solar modules, numbers, configuration
Detailed description of theproblem		
Battery SN, Firmware version		Check battery user manual for the path
Is it connected to Solis Monitoring Portal		Yes/No
Take pictures showing all the cable connections in the system (Videos preferred)		lfavailable

8. Specifications

Technical Data	RHI-1P5K-HVES-5G	RHI-1P7.6K-HVES-5G
Input DC (PV side)		•
Recommended max. PV power	7000W	10600W
Max. input voltage	500V	
Rated voltage	33	0V
Start-up voltage	120V	
MPPT voltage range	90-4	450V
Full load MPPT voltage range	115-450V	175-450V
Max. input current	26A	/26A
Max. short circuit current	40A	/40A
MPPT number/Max input strings number	2	/4
Battery		
Battery Type	Li-	ion
Battery Voltage range	120 -	500V
Battery Capacity	50 - 2	000Ah
Maximum Charging Power	71	٢W
Maximum Charge/discharge current	20	0A
Communication	CAN/RS485	
Output AC(Back-up)		
Rated output power	61	κΨ
Max. apparent output power	7k	:VA
Back-up switch time	<1	0ms
Rated output voltage(L-L)	24	0 V
Rated output voltage(L-N)*	12	0 V
Rated frequency	60)Hz
Rated output current	25A	
THDv(@linear load)	<;	3%
Input AC (Grid side)		
Input voltage range	190-280V	
Max. input current	43	8A
Frequency range	49.5-6	60.5 Hz

Output AC(Grid side)			
Rated output power	5kW	7.6kW	
Max. apparent output power	5kVA	7.6kVA	
Operation phase	1Φ,	1¢/PE	
Rated grid voltage	208V / 240 V		
The grid voltage range	167-239 V (for 208 V rated)/192-276 V (for 240 V rated)		
Rating grid frequency	60 Hz		
AC grid frequency range	59.5 Hz-60.5 Hz		
Rating grid output current	24.0A/21.0A	36.5A/31.7A	
Max. output current	40.0A/40.0A	40.0A/50.0A	
Power Factor	>0.99 (0.8 leading - 0.8 lagging)		
THDi	<3%		
Efficiency			
Max efficiency	98.	.0%	
EU efficiency	97.5%		
Protection			
Ground fault monitoring	Y	es	
Residual current mornitoring unit	Y	es	
Integrated AFCI (DC arc-fault circuit protection)	cuit protection) Yes		
DC reverse polarity protection	Yes		
Rapid Shutdown NEC 2017	Built-in MLRSD Sunspec Transmitter		
Compliant MLRSD Products	pliant MLRSD Products APSmart RSD-S-PLC		
Protection class/Over voltage category	/	(11	

8. Specifications

General data	
Dimensions(W/H/D)	20.2*28.1*8.18 in (539*717*250 mm)
Weight	66.1 lbs (30 kg)
Topology	Transformerless
Operation temperature range	-25~+60 °C/-13~+140 °F
Ingress protection	NEMA4X
Noise emission	<30 dB (A)
Cooling concept	Natural convection
Max.operation altitude	2000m
Grid connection standard	IEEE1547A, UL 1741 SA, ISO-NE, CA Rule 21 phase III
Safty/EMC standard	UL 1741 CRD, IEEE 1547, UL 1699B, UL 1998, UL 9540,
-	CAN/CSA C22.2.107.1-1, FCC, Part 15 Class B, SRD-UL1741
Compatible batteries	BYD B-Box H5.0/7.5/10, LG Chem RESU10H Type R
Features	
DC connection	2 knockout for 1" conduit at side and bottom,
AC connection	3 knockout for 1" conduit at side and bottom, Screw clamp terminal
Display	7.0"LCD color screen display
Communication	RS485, Optional:Wi-Fi, GPRS
Warranty	10 years standard (Extand to 20 years)

Technical Data	RHI-1P10K-HVES-5G
Input DC (PV side)	
Recommended max. PV power	14000W
Max. input voltage	500V
Rated voltage	330V
Start-up voltage	120V
MPPT voltage range	90-450V
Full load MPPT voltage range	230-450V
Max. input current	26A/26A
Max. short circuit current	40A/40A
MPPT number/Max input strings number	2/4
Battery	
Battery Type	Li-ion
Battery Voltage range	120 - 500V
Battery Capacity	50 - 2000Ah
Maximum Charging Power	7kW
Maximum Charge/discharge current	20A
Communication	CAN/RS485
Output AC(Back-up)	
Rated output power	6kW
Max. apparent output power	7kVA
Back-up switch time	<10ms
Rated output voltage(L-L)	240 V
Rated output voltage(L-N)*	120 V
Rated frequency	60Hz
Rated output current	25A
THDv(@linear load)	< 3%
Input AC (Grid side)	
Input voltage range	190-280V
Max. input current	48A
Frequency range	49.5-60.5 Hz

8. Specifications

Output AC(Grid side)	
Rated output power	10kW
Max. apparent output power	10kVA
Operation phase	1Φ/PE
Rated grid voltage	208V / 240 V
The grid voltage range	183-228 V (for 208 V rated)/211-264 V (for 240 V rated)
Rating grid frequency	60 Hz
AC grid frequency range	59.5 Hz-60.5 Hz
Rating grid output current	48.0A/41.7A
Max. output current	60.0A/60.0A
Power Factor	>0.99 (0.8 leading - 0.8 lagging)
THDi	<3%
Efficiency	
Max efficiency	98.0%
EU efficiency	97.5%
Protection	
Ground fault monitoring	Yes
Residual current mornitoring unit	Yes
Integrated AFCI (DC arc-fault circuit protection)	Yes
DC reverse polarity protection	Yes
Rapid Shutdown NEC 2017	Built-in MLRSD Sunspec Transmitter
Compliant MLRSD Products	APSmart RSD-S-PLC
Protection class/Over voltage category	1/11

General data	
Dimensions(W/H/D)	20.2*28.1*8.18 in (539*717*250 mm)
Weight	66.1 lbs (30 kg)
Тороlоду	Transformerless
Operation temperature range	-25~+60 °C/-13~+140 °F
Ingress protection	NEMA 4X
Noise emission	<30 dB (A)
Cooling concept	Natural convection
Max.operation altitude	2000m
Grid connection standard	IEEE1547A, UL 1741 SA, ISO-NE, CA Rule 21 phase III
Safty/EMC standard	UL 1741 CRD, IEEE 1547, UL 1699B, UL 1998, UL 9540, CAN/CSA C22.2.107.1-1, FCC, Part 15 Class B, SRD-UL1741
Compatible batteries	BYD B-Box H5.0/7.5/10, LG Chem RESU10H Type R
Features	
DC connection	2 knockout for 1" conduit at side and bottom, Fuse screw terminal
AC connection	3 knockout for 1" conduit at side and bottom, Screw clamp terminal (Max. 7 AWG)
Display	7.0"LCD color screen display
Communication	RS485, Optional:Wi-Fi, GPRS
Warranty	10 years standard (Extand to 20 years)

9. Appendix

9.1 Solutions for different grid topology

This product is designed for the following two types of grid topology. **Type 1: Grid with Neutral grounded**

Please follow the below circuit diagram to configure the connection:

Please follow the below circuit diagram to configure the connection (Use the central tap N of the auto-transformer to ground the neutral):

9. Appendix

Type 3: Special grid topology

For the following grid topology, the standard hybrid inverter is NOT applicable. Please contact Solis to purchase necessary accessories to be compatible with them. Requirements:

- 1. A special contactor box (Automatic change-over switch box)
- 2. Special firmware update

Please follow the below circuit diagram to configure the connection:

NOTE:

With the change-over switch installed and the firmware updated, the hybrid inverter's backup port WILL NOT supply power unless the grid fails. When the grid fails, the contactor switches inside the box will switch on the backup port and the loads will be supported by the backup port only (Power from battery and PV).